nw|“`
import tensorflow as tf
Image: www.highlytechno.com
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
Define a custom transformation function.
def my_func(x):
return x * 2
Apply the custom transformation function to the dataset.
dataset = dataset.map(my_func)
Create an iterator for the dataset.
iterator = dataset.make_one_shot_iterator()
Get the next element from the iterator.
next_element = iterator.get_next()
Initialize the TensorFlow session.
sess = tf.Session()
Run the TensorFlow session.
with sess.as_default():
Get the value of the next element.
value = sess.run(next_element)
Print the value.
print(value)
The following is a breakdown of the code:
1. Import TensorFlow:
```python
import tensorflow as tf
- Create a dataset from a list of numbers:
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
- Define a custom transformation function:
def my_func(x):
return x * 2
This function multiplies the input value by 2.
- Apply the custom transformation function to the dataset:
dataset = dataset.map(my_func)
The map
method applies the custom transformation function to each element in the dataset.
- Create an iterator for the dataset:
iterator = dataset.make_one_shot_iterator()
An iterator is used to iterate over the elements in the dataset.
- Get the next element from the iterator:
next_element = iterator.get_next()
The get_next
method gets the next element from the iterator.
- Initialize the TensorFlow session:
sess = tf.Session()
A TensorFlow session is used to run TensorFlow operations.
- Run the TensorFlow session with the default session:
with sess.as_default():
# Get the value of the next element.
value = sess.run(next_element)
# Print the value.
print(value)
In the with
block, we set the default session to the session we created earlier. Then, we use the run
method to get the value of the next element in the dataset. Finally, we print the value.
When you run this code, it will print the following output:
[ 2 4 6 8 10 12 14 16 18 20]
This shows that the custom transformation function was successfully applied to the dataset, and the values were multiplied by 2.
Image: lessonislam.com
Forex Trading Halal Or Haram In Urdu